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Cost Cumulant-Based Control for a Class of Linear Quadratic Tracking Problems

Khanh D. Pham
Space Vehicles Directorate

Air Force Research Laboratory
Kirtland AFB, NM 87117 U.S.A.

Abstract— The topic of cost cumulant control is currently
receiving substantial research from the theoretical community
oriented toward stochastic control theory. For instance, the
present paper extends the application of cost cumulant con-
troller design to control of a wide class of linear quadratic
tracking systems. It is shown that the tracking problem can be
solved in two parts: a feedback k-cost-cumulant (kCC) control
whose optimization criterion representing a linear combination
of finite k cumulant indices of a finite horizon integral quadratic
cost associated to a linear tracking stochastic system is deter-
mined by a set of Riccati-type differential equations and a
set of time-dependent tracking variables is found by solving an
auxiliary set of differential equations (incorporating the desired
trajectory) backward from a stable final time.

I. PRELIMINARIES

An interesting extension of the cost-cumulant control the-
ory [1]-[5] when both perfect and noisy state measurements
are available, is to consider following a specified output
trajectory as closely as possible in the sense of cost-cumulant
control objective. Some motivations for this theoretical devel-
opment are found in the altitude control of a terrain-following
aircraft where there is knowledge of the future terrain; and in
tactical and combat situations wherein a vehicle with the goal
seeking nature initially decides on an appropriate destination
and then moves in an optimal fashion toward that destination.
Consider a linear stochastic tracking system governed by

dx(t) = (A(t)x(t) + B(t)u(t))dt + G(t)dw(t), x(t0) (1)
y(t) = C(t)x(t) (2)

where the coefficients A ∈ C([t0, tf ];Rn×n), B ∈
C([t0, tf ];Rn×m), C ∈ C([t0, tf ];Rr×n), and G ∈
C([t0, tf ];Rn×p). The system noise w(t) ∈ Rp is the
p-dimensional stationary Wiener process starting from t0,
independent of x(t0) = x0, and defined on a complete
probability space (Ω,F ,P) over [t0, tf ] with the correlation

E
{
[w(τ)− w(ξ)][w(τ)− w(ξ)]T

}
= W |τ − ξ| , W > 0 .

The control input u ∈ L2
Ft

(Ω; C([t0, tf ];Rm)) the subset
of Hilbert space of Rm-valued square-integrable process
on [t0, tf ] that are adapted to the σ-field Ft generated by
w(t) to the specified system model is selected so that the
resulting output y ∈ L2

Ft
(Ω; C([t0, tf ];Rr)) best matches

the desired output z ∈ L2([t0, tf ];Rr) in the cost cumulant
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optimization criterion which will be clear shortly. Associated
with the initial condition (t0, x0; u) ∈ [t0, tf ] × Rn ×
L2
Ft

(Ω; C([t0, tf ];Rm)) is a traditional finite-horizon IQF
random cost J : [t0, tf ] × Rn × L2

Ft
(Ω; C([t0, tf ];Rm)) 7→

R+ such that

J(t0, x0; u) = [z(tf )− y(tf )]T Qf [z(tf )− y(tf )] (3)

+
∫ tf

t0

{[z(τ)−y(τ)]TQ(τ) [z(τ)−y(τ)] + uT(τ)R(τ)u(τ)}dτ

in which the terminal penalty error weighting Qf ∈ Rr×r,
the error weighting Q ∈ C([t0, tf ];Rr×r), and the control
input weighting R ∈ C([t0, tf ];Rm×m) are symmetric and
positive semidefinite with R(t) invertible.

In the perfect-state measurement case, the initial state
is assumed to be known exactly, and the control input is
generated by a closed-loop control policy of interest γ :
[t0, tf ]×L2

Ft
(Ω; C([t0, tf ];Rn)) 7→ L2

Ft
(Ω; C([t0, tf ];Rm)),

according to the control law

u(t) = γ(t, x(t)) = K(t)x(t) + uext(t) , (4)

where uext ∈ C([t0, tf ];Rm) is an external signal and K ∈
C([t0, tf ];Rm×n) is an admissible feedback gain in a sense
to be specified later. Hence, for the given initial condition
(t0, x0) ∈ [t0, tf ]×Rn and subject to the control policy (4),
the dynamics of the tracking problem are governed by

dx(t) = [A(t) + B(t)K(t)]x(t)dt + B(t)uext(t)dt

+ G(t)dw(t) , x(t0) = x0 , (5)
y(t) = C(t)x(t) , (6)

and the IQF random cost

J(t0, x0; K, uext) = [z(tf )− y(tf )]T Qf [z(tf )− y(tf )]

+
∫ tf

t0

{
[z(τ)− y(τ)]T Q(τ) [z(τ)− y(τ)] (7)

+ [K(τ)x(τ) + uext(τ)]TR(τ)[K(τ)x(τ) + uext(τ)]
}

dτ.

It is now ready to generate some cost cumulants for the
finite-horizon tracking problem. These cost statistics are sub-
sequently utilized in defining the performance index arisen
in state-feedback kCC control over a finite horizon opti-
mization. In general, it is suggested that the initial condition
(t0, x0) should be replaced by any arbitrary pair (α, xα).
Then, for the given external signal uext and admissible
feedback gain K, the cost functional (7) is seen as the “cost-
to-go”, J (α, xα). The moment-generating function of the



vector-valued random process (5) is given by the definition

ϕ (α, xα; θ) = E {exp (θJ (α, xα))} , (8)

where the scalar θ ∈ R+ is a small parameter. Thus, the
cumulant-generating function immediately follows

ψ (α, xα; θ) = ln {ϕ (α, xα; θ)} , (9)

in which ln{·} denotes the natural logarithmic transformation
of an enclosed entity.

Theorem 1: For all α ∈ [t0, tf ] and the
small parameter θ ∈ R+, define ϕ (α, xα; θ) =
% (α, θ) exp

{
xT

αΥ(α, θ)xα + 2xT
αη(α, θ)

}
and υ (α, θ) =

ln{% (α, θ)}. Then, the cost cumulant-generating function
can be expressed as follows

ψ (α, xα; θ) = xT
αΥ(α, θ)xα + 2xT

αη(α, θ) + υ (α, θ) (10)

where Υ(α, θ), η(α, θ), and υ (α, θ) solve the backward-in-
time differential equations

d

dα
Υ(α, θ) = −[A(α) + B(α)K(α)]T Υ(α, θ) (11)

−Υ(α, θ)[A(α) + B(α)K(α)]

− 2Υ(α, θ)G(α)WGT (α)Υ(α, θ)

− θCT (α)Q(α)C(α)− θKT (α)R(α)K(α) ,

d

dα
η (α, θ) = −[A(α) + B(α)K(α)]T η(α, θ) (12)

−Υ(α, θ)B(α)uext(α)

− θKT (α)R(α)uext(α) + θCT (α)Q(α)z(α) ,

d

dα
υ (α, θ) = −Tr

{
Υ(α, θ)G (α)WGT (α)

}
(13)

− 2ηT (α, θ)B(α)uext(α)

− θuT
ext(α)R(α)uext(α)− θzT (α)Q(α)z(α)

with the terminal conditions Υ(tf , θ) = θCT (tf )QfC(tf ),
η (tf , θ) = θCT (tf )Qfz(tf ), υ (tf , θ) = θzT (tf )Qfz(tf ).
Proof. For any θ given, let $ (α, xα; θ) = exp {θJ (α, xα)},
then the moment-generating function becomes
ϕ (α, xα; θ) = E {$ (α, xα; θ)} with the time derivative of

d

dα
ϕ (α, xα; θ) = −θ

{
xT

α [CT (α)Q(α)C(α)

+ KT (α)R(α)K(α)]xα + 2xT
α [KT (α)R(α)uext(α)

− CT (α)Q(α)z(α)] + uT
ext(α)R(α)uext(α)

+ zT (α)Q(α)z(α)
}

ϕ (α, xα; θ) . (14)

Using the standard Ito’s formula, it yields

dϕ (α, xα; θ) = E {d$ (α, xα; θ)} ,

= E
{

$α (α, xα; θ) dα + $xα (α, xα; θ) dxα

+
1
2

Tr
{
$xαxα(α, xα; θ)G(α)WGT (α)

}
dα

}
,

= ϕxα (α, xα; θ) [A(α) + B(α)K(α)] xαdα

+ ϕα (α, xα; θ) dα + ϕxα (α, xα; θ)B(α)uext(α)dα

+
1
2

Tr
{
ϕxαxα (α, xα; θ)G (α)WGT (α)

}
dα ,

which under the definition ϕ (α, xα; θ) =
% (α, θ) exp

{
xT

αΥ(α, θ)xα + 2xT
αη(α, θ)

}
and the partial

derivatives

ϕα (α, xα; θ) =[
d

dα%(α, θ)
%(α, θ)

+ xT
α

d

dα
Υ(α, θ)xα + 2xT

α

d

dα
η(α, θ)

]
ϕ(α, xα; θ)

ϕxα (α, xα; θ) ={
xT

α

[
Υ(α, θ) + ΥT (α, θ)

]
+ 2ηT (α, θ)

}
ϕ (α, xα; θ) ,

ϕxαxα
(α, xα; θ) =

[
Υ(α, θ) + ΥT (α, θ)

]
ϕ (α, xα; θ)

+
[
Υ(α, θ)+ΥT(α, θ)

]
xαxT

α

[
Υ(α, θ)+ΥT(α, θ)

]
ϕ (α, xα; θ)

leads to

d

dα
ϕ (α, xα; θ) =

d
dα%(α, θ)
%(α, θ)

ϕ (α, xα; θ)

+
[
xT

α

d

dα
Υ(α, θ)xα + 2xT

α

d

dα
η(α, θ)

]
ϕ (α, xα; θ)

+ xT
α [A(α) + B(α)K(α)]T Υ(α, θ)xαϕ (α, xα; θ)

+ xT
αΥ(α, θ) [A(α) + B(α)K(α)] xαϕ (α, xα; θ)

+ 2xT
α [A(α) + B(α)K(α)]T η(α, θ)ϕ (α, xα; θ)

+ 2xT
αΥ(α, θ)B(α)uext(α)ϕ (α, xα; θ)

+ 2ηT (α, θ)B(α)uext(α)ϕ (α, xα; θ)

+ Tr
{
Υ(α, θ)G(α)WGT (α)

}
ϕ (α, xα; θ)

+ 2xT
αΥ(α, θ)G(α)WGT (α)Υ(α, θ)xαϕ (α, xα; θ) . (15)

Replacing (14) into (15) and having both linear and quadratic
terms independent of xα, it requires that

d

dα
Υ(α, θ) = −[A(α) + B(α)K(α)]T Υ(α, θ)

−Υ(α, θ)[A(α) + B(α)K(α)]

− 2Υ(α, θ)G(α)WGT (α)Υ(α, θ)

− θCT (α)Q(α)C(α)− θKT (α)R(α)K(α) ,

d

dα
η (α, θ) = −[A(α) + B(α)K(α)]T η(α, θ)

−Υ(α, θ)B(α)uext(α)

− θKT (α)R(α)uext(α) + θCT (α)Q(α)z(α) ,

d

dα
υ (α, θ) = −Tr

{
Υ(α, θ)G (α)WGT (α)

}

− 2ηT (α, θ)B(α)uext(α)

− θuT
ext(α)R(α)uext(α)− θzT (α)Q(α)z(α) .

At the final time α = tf , it follows that ϕ(tf , x(tf ); θ) =
%(tf , θ) exp

{
xT (tf )Υ(tf , θ)x(tf ) + 2xT (tf )η(tf , θ)

}
=

E
{
exp

{
θ[z(tf )− y(tf )]T Qf [z(tf )− y(tf )]

}}
which in

turn yields the terminal conditions as

Υ(tf , θ) = θCT (tf )QfC(tf ) ,

η(tf , θ) = −θCT (tf )Qfz(tf ) ,

%(tf , θ) = exp
{
θzT (tf )Qfz(tf )

}
,

υ(tf , θ) = θzT (tf )Qfz(tf ) .



Remark. The expression for cost cumulants (10) in the
tracking problem indicates that additional second and third
affine terms are taking into account of dynamics mismatched
in their trajectory-governing equations.

By definition, cost cumulants for the tracking problem can
be generated by employing the MacLaurin series expansion
for the cumulant-generating function

ψ (α, xα; θ) =
∞∑

i=1

κi(α, xα)
θi

i!
, (16)

=
∞∑

i=1

∂i

∂θi
ψ(α, xα; θ)

∣∣∣∣
θ=0

θi

i!
,

in which κi(α, xα) are called cost cumulants. Furthermore,
the series coefficients of the expansion is computed by using
the result (10)

∂i

∂θi
ψ(α, xα; θ)

∣∣∣∣
θ=0

= xT
α

∂i

∂θi
Υ(α, θ)

∣∣∣∣
θ=0

xα

+ 2xT
α

∂i

∂θi
η(α, θ)

∣∣∣∣
θ=0

+
∂i

∂θi
υ(α, θ)

∣∣∣∣
θ=0

. (17)

In view of the results (16) and (17), we may obtain cost
cumulants for the tracking problem as described below

κi(α, xα) = xT
α

∂i

∂θi
Υ(α, θ)

∣∣∣∣
θ=0

xα+2xT
α

∂i

∂θi
η(α, θ)

∣∣∣∣
θ=0

+
∂i

∂θi
υ(α, θ)

∣∣∣∣
θ=0

, (18)

for any finite 1 ≤ i < ∞. For notational convenience, denote
H(α, i) = ∂i

∂θi Υ(α, θ)
∣∣∣
θ=0

, D̆(α, i) = ∂i

∂θi η(α, θ)
∣∣∣
θ=0

,

D(α, i) = ∂i

∂θi υ(α, θ)
∣∣∣
θ=0

. Then, we would like to state the
following theorem.

Theorem 2: (Cost Cumulants in Tracking Problems)
The system dynamics governed by the linear stochastic
differential equations (5)-(6) attempt to track the prescribed
signal z(t) with the finite-horizon IQF cost (7). For k ∈ Z+

fixed, the kth cost cumulant in the tracking problem is given

κk(t0, x0; K, uext) = xT
0 H(t0, k)x0

+ 2xT
0 D̆(t0, k) + D(t0, k) , (19)

in which the building variables {H(α, i)}k
i=1, {D̆(α, i)}k

i=1,
and {D(α, i)}k

i=1 evaluated at α = t0 satisfy the differential
equations (with the dependence of H(α, i), D̆(α, i), and
D(α, i) upon uext and K suppressed)

d

dα
H(α, 1) = − [A(α) + B(α)K(α)]T H(α, 1)

−H(α, 1) [A(α) + B(α)K(α)]

− CT (α)Q(α)C(α)−KT (α)R(α)K(α) , (20)
d

dα
H(α, i) = − [A(α) + B(α)K(α)]T H(α, i)

−H(α, i) [A(α) + B(α)K(α)]

−
i−1∑

j=1

2i!
j!(i− j)!

H(α, j)G(α)WGT (α)H(α, i− j) (21)

together with

d

dα
D̆(α, 1) = − [A(α) + B(α)K(α)]T D̆(α, 1) (22)

−H(α, 1)B(α)uext(α)

−KT (α)R(α)uext(α) + CT (α)Q(α)z(α) ,

d

dα
D̆(α, i) = − [A(α) + B(α)K(α)]T D̆(α, i)

−H(α, i)B(α)uext(α), 2 ≤ i ≤ k, (23)

and
d

dα
D(α, 1) = −Tr

{
H(α, 1)G(α)WGT (α)

}
(24)

− 2D̆T (α, 1)B(α)uext(α)

− uT
ext(α)R(α)uext(α)− zT (α)Q(α)z(α) ,

d

dα
D(α, i) = −Tr

{
H(α, i)G(α)WGT (α)

}

− 2D̆T (α, i)B(α)uext(α), 2 ≤ i ≤ k (25)

where the terminal conditions H(tf , 1) = CT (tf )QfC(tf ),
H(tf , i) = 0 for 2 ≤ i ≤ k; D̆(tf , 1) = −CT (tf )Qfz(tf ),
D̆(tf , i) = 0 for 2 ≤ i ≤ k and D(tf , 1) = zT (tf )Qfz(tf ),
D(tf , i) = 0 for 2 ≤ i ≤ k.
Proof. Note that the equations (20), (22) and (24) satisfied
by H(α, 1), D̆(α, 1), and D(α, 1) can be obtained by taking
the derivative with respect to θ of the equations (11)-(13)

d

dα

{
∂

∂θ
Υ(α, θ)

}
= − [A(α) + B(α)K(α)]T

∂

∂θ
Υ(α, θ)

− ∂

∂θ
Υ(α, θ) [A(α) + B(α)K(α)]

−2
{

∂

∂θ
Υ(α, θ)

}
G(α)WGT (α)Υ(α, θ)

−2Υ(α, θ)G(α)WGT (α)
{

∂

∂θ
Υ(α, θ)

}

−CT (α)Q(α)C(α)−KT (α)R(α)K(α) ,

d

dα

{
∂

∂θ
η(α, θ)

}
= − [A(α) + B(α)K(α)]T

∂

∂θ
η(α, θ)

− ∂

∂θ
Υ(α, θ)B(α)uext(α)

−KT (α)R(α)uext(α) + CT (α)Q(α)z(α) ,

d

dα

{
∂

∂θ
υ(α, θ)

}
= −Tr

{
∂

∂θ
Υ(α, θ)G(α)WGT (α)

}

−2
∂

∂θ
ηT (α, θ)B(α)uext(α)

−uT
ext(α)R(α)uext(α)− zT (α)Q(α)z(α) ,

wherein terminal conditions ∂
∂θ Υ(tf , θ) = CT (tf )QfC(tf ),

∂
∂θ η(tf , θ) = −CT (tf )Qfz(tf ), and ∂

∂θ υ(tf , θ) =
zT (tf )Qfz(tf ). It is important to see that when θ = 0 the
equation (11) becomes

d

dα
Υ(α, 0) = −[A(α) + B(α)K(α)]T Υ(α, 0)

−Υ(α, 0)[A(α) + B(α)K(α)]

− 2Υ(α, 0)G(α)WGT (α)Υ(α, 0) , Υ(tf , 0) = 0 .



Because the closed-loop matrix A(α) + B(α)K(α) is as-
sumed stable for all α ∈ [t0, tf ], it is then deduced that
Υ(α, 0) = 0. Using this result together with the definitions of
H(α, 1) = ∂

∂θ Υ(α, θ)
∣∣
θ=0

, D̆(α, 1) = ∂
∂θ η(α, θ)

∣∣
θ=0

, and
D(α, 1) = ∂

∂θ υ(α, θ)
∣∣
θ=0

, the first cost cumulant is found

κ1(t0, x0; K) = xT
0 H(t0, 1)x0 + 2xT

0 D̆(t0, 1) + D(t0, 1) ,

where the solutions H(α, 1), D̆(α, 1) and D(α, 1) satisfy
the backward-in-time differential equations

d

dα
H(α, 1) = − [A(α) + B(α)K(α)]T H(α, 1)

−H(α, 1) [A(α) + B(α)K(α)]

− CT (α)Q(α)C(α)−KT (α)R(α)K(α) ,

d

dα
D̆(α, 1) = − [A(α) + B(α)K(α)]T D̆(α, 1)

−H(α, 1)B(α)uext(α)

−KT (α)R(α)uext(α) + CT (α)Q(α)z(α) ,

d

dα
D(α, 1) = −Tr

{
H(α, 1)G(α)WGT (α)

}

− 2D̆T (α, 1)B(α)uext(α)

− uT
ext(α)R(α)uext(α)− zT (α)Q(α)z(α) ,

with boundaries H(tf , 1) = CT (tf )QfC(tf ), D̆(tf , 1) =
−CT (tf )Qfz(tf ) and D(tf , 1) = zT (tf )Qfz(tf ). Repeat-
edly, taking ∂2

∂θ2 of the equations (11)-(13) yield the corre-
sponding differential equations

d

dα

{
∂2

∂θ2
Υ(α, θ)

}
= − [A(α) + B(α)K(α)]T

∂2

∂θ2
Υ(α, θ)

− ∂2

∂θ2
Υ(α, θ) [A(α) + B(α)K(α)]

−2
∂2

∂θ2
Υ(α, θ)G(α)WGT (α)Υ(α, θ)

−4
∂

∂θ
Υ(α, θ)G(α)WGT (α)

∂

∂θ
Υ(α, θ)

−2Υ(α, θ)G(α)WGT (α)
∂2

∂θ2
Υ(α, θ) ,

d

dα

{
∂2

∂θ2
η(α, θ)

}
= − [A(α) + B(α)K(α)]T

∂2

∂θ2
η(α, θ)

− ∂2

∂θ2
Υ(α, θ)B(α)uext(α) ,

d

dα

{
∂2

∂θ2
υ(α, θ)

}
= −Tr

{
∂2

∂θ2
Υ(α, θ)G(α)WGT (α)

}

−2
∂2

∂θ2
ηT (α, θ)B(α)uext(α) ,

together with terminal conditions ∂2

∂θ2 Υ(tf , θ) = 0,
∂2

∂θ2 η(tf , θ) = 0, and ∂2

∂θ2 υ(tf , θ) = 0. Having substituted
H(α, 1) = ∂

∂θ Υ(α, θ)
∣∣
θ=0

, H(α, 2) = ∂2

∂θ2 Υ(α, θ)
∣∣∣
θ=0

,

D̆(α, 2) = ∂2

∂θ2 η(α, θ)
∣∣∣
θ=0

, D(α, 2) = ∂2

∂θ2 υ(α, θ)
∣∣∣
θ=0

and
Υ(α, θ)|θ=0 = 0 into the above equations, the second cost
cumulant can be obtained as follows

κ2(t0, x0; K) = xT
0 H(t0, 2)x0 + 2xT

0 D̆(t0, 2) + D(t0, 2) ,

in which the solutions H(α, 2), D̆(α, 2) and D(α, 2) evalu-
ated at α = t0, are solving the differential equations

d

dα
H(α, 2) = − [A(α) + B(α)K(α)]T H(α, 2)

−H(α, 2) [A(α) + B(α)K(α)]

−4H(α, 1)G(α)WGT (α)H(α, 1) , H(tf , 2) = 0 ,

d

dα
D̆(α, 2) = − [A(α) + B(α)K(α)]T D̆(α, 2)

−H(α, 2)B(α)uext(α) , D̆(tf , 2) = 0 ,

d

dα
D(α, 2) = −Tr

{
H(α, 2)G(α)WGT (α)

}

−2D̆T (α, 2)B(α)uext(α) , D(tf , 2) = 0 .

By successively taking derivatives of the equations (11)-(13)
with respect to θ and evaluating the results at θ = 0, the ith
cost cumulant can be written for all 2 ≤ i ≤ k

κi(t0, x0; K) = xT
0 H(t0, i)x0 + 2xT

0 D̆(t0, i) + D(t0, i) ,

where H(α, i), D̆(α, i) and D(α, i) evaluated at α = t0 are
the solutions of the coupled differential equations

d

dα
H(α, i) = − [A(α) + B(α)K(α)]T H(α, i)

−H(α, i) [A(α) + B(α)K(α)]

−
i−1∑

j=1

2i!
j!(i−j)!

H(α,j)G(α)WGT(α)H(α, i−j), H(tf ,i)=0

d

dα
D̆(α, i) = − [A(α) + B(α)K(α)]T D̆(α, i)

−H(α, i)B(α)uext(α) , D̆(tf , i) = 0 ,

d

dα
D(α, i) = −Tr

{
H(α, i)G(α)WGT (α)

}

− 2D̆T (α, i)B(α)uext(α) , D(tf , i) = 0 .

Thus, the proof is now complete.

II. PROBLEM STATEMENTS

In preparing for the kCC control statements of the
tracking problem, let k-tuple variables H and D be de-
fined as follows H(·) = (H1(·), . . . ,Hk(·)), D̆(·) =(
D̆1(·), . . . , D̆k(·)

)
, D(·) = (D1(·), . . . ,Dk(·)) for each

element Hi ∈ C1([t0, tf ];Rn×n) of H, D̆i ∈ C1([t0, tf ];Rn)
of D̆ and Di ∈ C1([t0, tf ];R) of D having the representations

Hi(·) = H(·, i) , D̆i(·) = D̆(·, i) , Di(·) = D(·, i) ,

with the right members satisfying the dynamic equations
(20)-(25) on the horizon [t0, tf ]. The problem formulation
can be considerably simplified if the convenient mappings
are introduced

Fi : [t0, tf ]× (Rn×n)k × Rm×n 7→ Rn×n

Ği : [t0, tf ]× (Rn×n)k × (Rn)k × Rm×n × Rm 7→ Rn

Gi : [t0, tf ]× (Rn×n)k × (Rn)k × Rm 7→ R



where the actions are given by

F1(α,H,K) = − [A(α) + B(α)K(α)]T H1(α)
−H1(α) [A(α) + B(α)K(α)]

− CT (α)Q(α)C(α)−KT (α)R(α)K(α) ,

Fi(α,H,K) = − [A(α) + B(α)K(α)]T Hi(α)
−Hi(α) [A(α) + B(α)K(α)]

−
i−1∑

j=1

2i!
j!(i− j)!

Hj(α)G(α)WGT (α)Hi−j(α) ,

Ğ1

(
α,H, D̆,K, uext

)
= − [A(α) + B(α)K(α)]T D̆1(α)

−H1(α)B(α)uext(α)

−KT (α)R(α)uext(α) + CT (α)Q(α)z(α) ,

Ği

(
α,H, D̆,K, uext

)
= − [A(α) + B(α)K(α)]T D̆i(α)

−Hi(α)B(α)uext(α) ,

G1

(
α,H, D̆, uext

)
= −Tr

{H1(α)G(α)WGT (α)
}

− 2D̆T
1 (α)B(α)uext(α)

− uT
ext(α)R(α)uext(α)− zT (α)Q(α)z(α) ,

Gi

(
α,H, D̆, uext

)
= −Tr

{Hi(α)G(α)WGT (α)
}

− 2D̆T
i (α)B(α)uext(α) .

Now there is no difficulty to establish the product mappings

F1×· · ·×Fk : [t0, tf ]× (Rn×n)k×Rm×n 7→ (Rn×n)k

Ğ1×· · ·×Ğk : [t0, tf ]×(Rn×n)k×(Rn)k×Rm×n×Rm 7→(Rn)k

G1×· · ·×Gk : [t0, tf ]× (Rn×n)k× (Rn)k×Rm 7→ Rk

along with the corresponding notations F = F1 × · · · × Fk,
Ğ = Ğ1×· · ·×Ğk, and G = G1×· · ·×Gk. Thus, the dynamic
equations of motion (20)-(25) can be rewritten as

d

dα
H(α)=F(α,H(α), K(α)), H(tf ) = Hf ,

d

dα
D̆(α)= Ğ

(
α,H(α), D̆(α),K(α), uext(α)

)
, D̆(tf )=D̆f ,

d

dα
D(α)=G

(
α,H(α), D̆(α), uext(α)

)
, D(tf ) = Df

where k-tuple values Hf =
(
CT (tf )QfC(tf ), 0, . . . , 0

)
,

D̆f =
(−CT (tf )Qfz(tf ), 0, . . . , 0

)
and Df = (0, . . . , 0).

Note that the product system uniquely determines H, D̆
and D once the admissible external signal uext and feedback
gain K are specified. Hence, they are considered as H =
H(·,K), D̆ = D̆(·,K, uext) and D = D(·,K, uext). The
performance index in kCC control problems can now be
formulated in uext and K.

Definition 1: (Performance Index)
Fix k ∈ Z+ and the sequence µ = {µi ≥ 0}k

i=1 with µ1 > 0.
Then for the given (t0, x0), the performance index

φtk : [t0, tf ]× (Rn×n)k × (Rn)k × Rk 7→ R+

in finite-horizon state-feedback kCC control for the tracking
problem is defined as

φtk

(
t0,H(t0,K), D̆(t0,K, uext),D(t0,K, uext)

)

=
k∑

i=1

µi

[
xT

0Hi(t0,K)x0

+ 2xT
0 D̆i(t0,K, uext) +Di(t0,K, uext)

]
(26)

where the scalar, real constants µi represent parametric de-
sign freedom and the unique solutions {Hi(t0, K) ≥ 0}k

i=1,{
D̆i(t0,K, uext)

}k

i=1
and {Di(t0,K, uext)}k

i=1 evaluated at
α = t0 satisfy the dynamic equations

d

dα
H(α)=F(α,H(α),K(α)), H(tf ) = Hf ,

d

dα
D̆(α)= Ğ

(
α,H(α), D̆(α),K(α), uext(α)

)
, D̆(tf )=D̆f ,

d

dα
D(α)=G

(
α,H(α), D̆(α), uext(α)

)
, D(tf ) = Df .

For given terminal data (tf ,Hf , D̆f ,Df ), the classes of
admissible external signal and feedback gains may be defined
as follows.

Definition 2: (Admissible Signal and Feedback Gains)
Let compact subsets U ⊂ Rm and K ⊂ Rm×n be the sets
of allowable external inputs and gain values. For the given
k ∈ Z+ and the sequence µ = {µi ≥ 0}k

i=1 with µ1 >
0, the set of admissible external signals Utf ,Hf ,D̆f ,Df ;µ and
feedback gains Ktf ,Hf ,D̆f ,Df ;µ are respectively assumed to
be the classes of C([t0, tf ];Rm) and C([t0, tf ];Rm×n) with
values uext(·) ∈ U and K(·) ∈ K for which solutions to the
dynamic equations with the terminal conditions H(tf ) =
Hf , D̆(tf ) = D̆f , and D(tf ) = Df

d

dα
H(α) = F(α,H(α),K(α)) , (27)

d

dα
D̆(α) = Ğ

(
α,H(α), D̆(α),K(α), uext(α)

)
, (28)

d

dα
D(α) = G

(
α,H(α), D̆(α), uext(α)

)
(29)

exist on the interval of optimization [t0, tf ].
Then the optimization statements for the state-feedback kCC
control of the tracking problem over a finite horizon may be
stated in the sequel.

Definition 3: (Optimization Problem)
Suppose that k ∈ Z+ and the sequence µ = {µi ≥
0}k

i=1 with µ1 > 0 are fixed. Then the state-feedback
kCC control optimization problem over [t0, tf ] is given by
the minimization of (26) over uext(·) ∈ Utf ,Hf ,D̆f ,Df ;µ,
K(·) ∈ Ktf ,Hf ,D̆f ,Df ;µ and subject to the dynamic equations
of motion (27)-(29) for α ∈ [t0, tf ].
The sequence of following results will discuss the construc-
tion of scalar-valued functions which are the candidates for
the value function.

Definition 4: (Reachable Set)
Let reachable set Q be defined Q ,

{ (
ε,Y, Z̆,Z

)
∈



[t0, tf ]× (Rn×n)k × (Rn)k ×Rk
}

such that Uε,Y,Z̆,Z;µ 6= 0
and Kε,Y,Z̆,Z;µ 6= 0.
By adapting to the initial cost problem and the termi-
nologies present in the kCC control, the Hamilton-Jacobi-
Bellman (HJB) equation satisfied by the value function
V

(
ε,Y, Z̆,Z

)
is then given as follows.

Theorem 3: (HJB Equation-Mayer Problem)
Let

(
ε,Y, Z̆,Z

)
be any interior point of the reachable set Q

at which the value function V
(
ε,Y, Z̆,Z

)
is differentiable.

If there exist optimal external signal u∗ext ∈ Uε,Y,Z̆,Z;µ and
feedback gain K∗ ∈ Kε,Y,Z̆,Z;µ, then the partial differential
equation of dynamic programming

0 = min
uext∈U, K∈K

{
∂

∂ε
V

(
ε,Y, Z̆,Z

)
(30)

+
∂

∂ vec(Y)
V

(
ε,Y, Z̆,Z

)
vec (F (ε,Y,K))

+
∂

∂ vec
(
Z̆

)V
(
ε,Y, Z̆,Z

)
vec

(
Ğ

(
ε,Y, Z̆,K, uext

))

+
∂

∂ vec(Z)
V

(
ε,Y, Z̆,Z

)
vec

(
G

(
ε,Y, Z̆, uext

))}

is satisfied wherein the boundary condition
V

(
t0,H0, D̆0,D0

)
= φtk

(
t0,H0, D̆0,D0

)
.

Proof. Refer to the reference [7] for the detailed proof.
Theorem 4: (Verification Theorem)

Fix k ∈ Z+ and let W
(
ε,Y, Z̆,Z

)
be a continuously dif-

ferentiable solution of the HJB equation (30) which satisfies
the boundary condition

W
(
t0,H0, D̆0,D0

)
= φtk

(
t0,H0, D̆0,D0

)
. (31)

Let (tf ,Hf , D̆f ,Df ) be in Q; (uext, K) in Utf ,Hf ,D̆f ,Df ;µ×
Ktf ,Hf ,D̆f ,Df ;µ; H, D̆ and D the corresponding solutions
of (27)-(29). Then W(α,H(α), D̆(α),D(α)) is a non-
increasing function of α. If (u∗ext, K

∗) is in Utf ,Hf ,D̆f ,Df ;µ×
Ktf ,Hf ,D̆f ,Df ;µ defined on [t0, tf ] with corresponding solu-
tions, H∗, D̆∗, and D∗ of (27)-(29) such that for α ∈ [t0, tf ]

0 =
∂

∂ε
W

(
α,H∗(α), D̆∗(α),D∗(α)

)

+
∂

∂vec(Y)
W

(
α,H∗(α), D̆∗(α),D∗(α)

)
·

· vec (F (α,H∗(α),K∗(α)))

+
∂

∂vec(Z̆)
W

(
α,H∗(α), D̆∗(α),D∗(α)

)
·

· vec
(
Ğ

(
α,H∗(α), D̆∗(α),K∗(α), u∗ext(α)

))

+
∂

∂ vec(Z)
W

(
α,H∗(α), D̆∗(α),D∗(α)

)
·

· vec
(
G

(
α,H∗(α), D̆∗(α), u∗ext(α)

))
, (32)

then u∗ext and K∗ are optimal. Moreover,

W
(
ε,Y, Z̆,Z

)
= V

(
ε,Y, Z̆,Z

)
(33)

where V
(
ε,Y, Z̆,Z

)
is the value function.

Proof. Refer to [7].

III. OPTIMAL SOLUTION OF kCC CONTROL

The treatment of HJB approach to obtaining a state-
feedback solution to the kCC control problem over the finite
horizon of optimization requires to parameterize the terminal
time and states of the dynamical equations as

(
ε,Y, Z̆,Z

)

rather than
(
tf ,Hf , D̆f ,Df

)
. That is, for ε ∈ [t0, tf ] and

1 ≤ i ≤ k, the states of the system (27)-(29) defined on the
interval [t0, ε] have the terminal values denoted by

H(ε) = Y , D̆(ε) = Z̆ , D(ε) = Z .

Observe that the performance index (26) is quadratic affine
in terms of the arbitrarily fixed x0. This suggests a solution
to the HJB equation (30) may be sought in the form

W
(
ε,Y, Z̆,Z

)
= xT

0

k∑

i=1

µi (Yi + Ei(ε)) x0

+ 2xT
0

k∑

i=1

µi

(
Z̆i + T̆i(ε)

)
+

k∑

i=1

µi (Zi + Ti(ε)) (34)

where these parametric functions of time Ei ∈
C1([t0, tf ];Sn), T̆i ∈ C1([t0, tf ];Rn) and Ti ∈ C1([t0, tf ];R)
are to be determined. Using the isomorphic vec mapping,
there is no difficulty to verify the following result.

Lemma 1: Fix k ∈ Z+ and let
(
ε,Y, Z̆,Z

)
be any

interior point of the reachable set Q at which the real-valued
function W

(
ε,Y, Z̆,Z

)
of the form (34) is differentiable.

The derivative of W
(
ε,Y, Z̆,Z

)
with respect to ε is given

d

dε
W

(
ε,Y, Z̆,Z

)
= xT

0

k∑

i=1

µi

(
Fi(ε,Y,K)+

d

dε
Ei(ε)

)
x0

+ 2xT
0

k∑

i=1

µi

(
Ği

(
ε,Y, Z̆,K, uext

)
+

d

dε
T̆i(ε)

)

+
k∑

i=1

µi

(
Gi

(
ε,Y, Z̆, uext

)
+

d

dε
Ti(ε)

)
, (35)

provided uext ∈ U and K ∈ K.
Trying the guess solution (34) into the HJB equation (30), it
follows that

0 = min
uext∈U, K∈K

{
xT

0

k∑

i=1

µi

(
Fi(ε,Y,K) +

d

dε
Ei(ε)

)
x0

+ 2xT
0

k∑

i=1

µi

(
Ği

(
ε,Y, Z̆, K, uext

)
+

d

dε
T̆i(ε)

)

+
k∑

i=1

µi

(
Gi

(
ε,Y, Z̆, uext

)
+

d

dε
Ti(ε)

) }
. (36)



Notice that

k∑

i=1

µiFi(ε,Y,K) = − [A(ε) + B(ε)K]T
k∑

i=1

µiYi

−
k∑

i=1

µiYi [A(ε) + B(ε)K]− µ1C
T (ε)Q(ε)C(ε)

−µ1K
TR(ε)K −

k∑

i=2

µi

i−1∑

j=1

2!
j!(i− j)!

YjG(ε)WGT(ε)Yi−j ,

k∑

i=1

µiĞi

(
ε,Y, Z̆, K, uext

)
= − [A(ε) + B(ε)K]T

k∑

i=1

µiZ̆i

−
k∑

i=1

µiYiB(ε)uext − µ1K
TR(ε)uext + µ1C

T(ε)Q(ε)z(ε),

k∑

i=1

µiGi

(
ε,Y, Z̆, uext

)
= −

k∑

i=1

µiTr
{YiG(ε)WGT (ε)

}

−2
k∑

i=1

µiZ̆T
i B(ε)uext−µ1u

T
extR(ε)uext−µ1z

T(ε)Q(ε)z(ε).

Since the initial condition x0 and M0 are arbitrary vector and
rank-one matrix, the necessary condition for an extremum of
(26) on [t0, ε] is obtained by differentiating the expression
within the bracket of (36) with respect to uext and K as

uext(ε, Z̆) = −R−1(ε)BT (ε)
k∑

r=1

µ̂rZ̆r , (37)

K(ε,Y) = −R−1(ε)BT (ε)
k∑

r=1

µ̂rYr , (38)

where µ̂r = µi/µ1 and µ1 > 0. Replacing (37) and (38) into
(36) leads to the value function

xT
0

[
k∑

i=1

µi
d

dε
Ei(ε)−AT (ε)

k∑

i=1

µiYi −
k∑

i=1

µiYiA(ε)

− µ1C
T (ε)Q(ε)C(ε)

+
k∑

r=1

µ̂rYrB(ε)R−1(ε)BT (ε)
k∑

i=1

µiYi

+
k∑

i=1

µiYi(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sYs

− µ1

k∑
r=1

µ̂rYrB(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sYs

−
k∑

i=2

µi

i−1∑

j=1

2i!
j!(i− j)!

YjG(ε)WGT (ε)Yi−j

]
x0

+2xT
0

[
k∑

i=1

µi
d

dε
T̆i(ε)−AT (ε)

k∑

i=1

µiZ̆i+µ1C
T (ε)Q(ε)z(ε)

+
k∑

r=1

µrYrB(ε)R−1(ε)BT (ε)
k∑

i=1

µiZ̆i

+
k∑

i=1

µiYiB(ε)R−1(ε)BT (ε)
k∑

r=1

µ̂rZ̆r

− µ1

k∑
r=1

µ̂rYrB(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sZ̆s

]

+
k∑

i=1

µi
d

dε
Ti(ε)−

k∑

i=1

µiTr
{YiG(ε)WGT (ε)

}

+2
k∑

i=1

µiZ̆T
i B(ε)R−1(ε)BT(ε)

k∑
r=1

µ̂rZ̆r−µ1z
T(ε)Q(ε)z(ε)

− µ1

k∑
r=1

µ̂rZ̆T
r B(ε)R−1(ε)BT (ε)

k∑
s=1

µ̂sZ̆s . (39)

The remaining task is to display time-dependent functions

{Ei(·)}k
i=1,

{
T̆i(·)

}k

i=1
, and {Ti(·)}k

i=1, which yield a suf-
ficient condition to have the left-hand side of (39) being

zero for any ε ∈ [t0, tf ], when {Yi}k
i=1 and

{
Z̆i

}k

i=1
are

evaluated along solutions to the cumulant-generating equa-
tions. Careful observation of (39) suggests that {Ei(·)}k

i=1,{
T̆i(·)

}k

i=1
and {Ti(·)}k

i=1 may be chosen to satisfy the
differential equations as follows

d

dε
E1(ε) = AT (ε)H1(ε) +H1(ε)A(ε) + CT (ε)Q(ε)C(ε)

−H1(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)H1(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε) , (40)

d

dε
Ei(ε) = AT (ε)Hi(ε) +Hi(ε)A(ε)

−Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)Hi(ε)

+
i−1∑

j=1

2i!
j!(i− j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (41)

d

dε
T̆1(ε) = AT (ε)D̆1(ε)− CT (ε)Q(ε)z(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)D̆1(ε)

−Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

r=1

µ̂rD̆r(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sD̆s(ε) , (42)



d

dε
T̆i(ε) = AT (ε)D̆i(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)D̆i(ε)

−Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

r=1

µ̂rD̆r(ε) , (43)

d

dε
T1(ε) = Tr

{H1(ε)G(ε)WGT (ε)
}

+ zT(ε)Q(ε)z(ε)

− 2D̆T
1 (ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

µ̂rD̆r(ε)

+
k∑

r=1

µ̂rD̆T
r (ε)B(ε)R−1(ε)BT (ε)

k∑
s=1

µ̂sD̆s(ε) , (44)

d

dε
Ti(ε) = Tr

{Hi(ε)G(ε)WGT (ε)
}

− 2D̆T
i (ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

µ̂rD̆r(ε) . (45)

The external signal and feedback gain specified in (37) and
(38) are now applied along the solution trajectories of the
equations (27)-(29)

d

dε
H1(ε) = −AT (ε)H1(ε)−H1(ε)A(ε)− CT (ε)Q(ε)C(ε)

+H1(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)H1(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε) , (46)

d

dε
Hi(ε) = −AT (ε)Hi(ε)−Hi(ε)A(ε)

+Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)Hi(ε)

−
i−1∑

j=1

2i!
j!(i− j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (47)

d

dε
D̆1(ε) = −AT (ε)D̆1(ε) + CT (ε)Q(ε)z(ε)

+
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)D̆1(ε)

+Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

r=1

µ̂rD̆r(ε)

−
k∑

r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)
k∑

s=1

µ̂sD̆s(ε) , (48)

d

dε
D̆i(ε) =

k∑
r=1

µ̂rHr(ε)B(ε)R−1(ε)BT (ε)D̆i(ε) (49)

−AT (ε)D̆i(ε) +Hi(ε)B(ε)R−1(ε)BT (ε)
k∑

r=1

µ̂rD̆r(ε) ,

d

dε
D1(ε) = −Tr

{H1(ε)G(ε)WGT (ε)
}− zT (ε)Q(ε)z(ε)

+ 2D̆T
1 (ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

µ̂rD̆r(ε)

−
k∑

r=1

µ̂rD̆T
r (ε)B(ε)R−1(ε)BT (ε)

k∑
s=1

µ̂sD̆s(ε) , (50)

d

dε
Di(ε) = −Tr

{Hi(ε)G(ε)WGT (ε)
}

+ 2D̆T
i (ε)B(ε)R−1(ε)BT (ε)

k∑
r=1

µ̂rD̆r(ε) . (51)

where the terminal conditions H1(tf ) = CT (tf )QfC(tf ),
Hi(tf ) = 0 for 2 ≤ i ≤ k; D̆1(tf ) = −CT (tf )Qfz(tf ),
D̆i(tf ) = 0 for 2 ≤ i ≤ k and D1(tf ) = zT (tf )Qfz(tf ),
Di(tf ) = 0 for 2 ≤ i ≤ k. The boundary condition of
W(ε,Y, Z̆,Z) implies that

xT
0

k∑

i=1

µi (Hi0 + Ei(t0))x0

+ 2xT
0

k∑

i=1

µi

(
D̆i0 + T̆i(t0)

)
+

k∑

i=1

µi (Di0 + Ti(t0))

= xT
0

k∑

i=1

µiHi0x0 + 2xT
0

k∑

i=1

µiD̆i0 +
k∑

i=1

µiDi0 .

The initial conditions for the equations (40)-(45) follow
Ei(t0) = 0, T̆i(t0) = 0, and Ti(t0) = 0. Therefore, the
optimal external signal (37) and state-feedback feedback gain
(38) minimizing the performance index (26) become

u∗ext(ε) = −R−1(ε)BT (ε)
k∑

r=1

µ̂rD̆∗r (ε) ,

K∗(ε) = −R−1(ε)BT (ε)
k∑

r=1

µ̂rH∗r(ε) .

The theorem that follows contains a controller design algo-
rithm which is able to track a prescribed function of time in
the optimal kCC sense. The optimal kCC tracking controller
requires a standard state-feedback kCC control design and
an additional signal that results from the backward solutions
of linear differential equations.

Theorem 5: (Finite-Horizon kCC Control Solution for
Tracking Problems)
Let A ∈ C([t0, tf ];Rn×n), B ∈ C([t0, tf ];Rn×m), C ∈
C([t0, tf ];Rr×n), and G ∈ C([t0, tf ];Rn×p). The tracking
problem is then described by the equations (1)-(2) where
the input noise w(t) ∈ Rp is the p-dimensional Wiener
process starting from t0, independent of the initial con-
dition x0, and defined on a complete probability space



(Ω,F ,P) over [t0, tf ] with the correlation of increments
E

{
[w(τ)− w(ξ)][w(τ)− w(ξ)]T

}
= W |τ − ξ| and W >

0. The control input u ∈ L2
Ft

(Ω; C([t0, tf ];Rm)) to the
specified system is selected so that the resulting output
y ∈ L2

Ft
(Ω; C([t0, tf ];Rr)) best approximates the known a

priori trajectory z ∈ L2(C([t0, tf ];Rr)) in the sense of (26)
in which the terminal penalty error weighting Qf ∈ Rr×r,
the error weighting Q ∈ C([t0, tf ];Rr×r), and the control
input weighting R ∈ C([t0, tf ];Rm×m) are symmetric and
positive semidefinite with R(t) invertible.

Assume both k ∈ Z+ and the sequence µ = {µi ≥ 0}k
i=1

with µ1 > 0 are fixed. Then, the linear state-feedback kCC
control solution for the finite-horizon tracking problem is
implemented by

u∗(t) = K∗(t)x∗(t) + u∗ext(t) , (52)

K∗(α) = −R−1(α)BT (α)
k∑

r=1

µ̂rH∗r(α) , (53)

u∗ext(α) = −R−1(α)BT (α)
k∑

r=1

µ̂rD̆∗r(α) , (54)

where µ̂r = µi/µ1 and whenever {H∗r(α)}k
r=1, and{

D̆∗r(α)
}k

r=1
are the solutions of the backward-in-time ma-

trix differential equations

d

dα
H∗1(α) = − [A(α) + B(α)K∗(α)]T H∗1(α) (55)

−H∗1(α) [A(α) + B(α)K∗(α)]

− CT (α)Q(α)C(α)−K∗T (α)R(α)K∗(α) ,

d

dα
H∗r(α) = − [A(α) + B(α)K∗(α)]T H∗r(α) (56)

−H∗r(α) [A(α) + B(α)K∗(α)]

−
r−1∑
s=1

2r!
s!(r − s)!

H∗s(α)G(α)WGT(α)H∗r−s(α),

and the backward-in-time vector differential equations

d

dα
D̆∗1(α) = − [A(α) + B(α)K∗(α)]T D̆∗1(α) (57)

−H1(α)B(α)u∗ext(α)

−K∗T (α)R(α)u∗ext(α) + CT (α)Q(α)z(α) ,

d

dα
D̆∗r(α) = − [A(α) + B(α)K∗(α)]T D̆∗r(α)

−Hr(α)B(α)u∗ext(α) (58)

with the terminal boundary conditions H∗1(tf ) =
CT (tf )QfC(tf ), H∗r(tf ) = 0 for 2 ≤ r ≤ k and
D̆∗1(tf ) = −CT (tf )Qfz(tf ), D̆∗r (tf ) = 0 for 2 ≤ r ≤ k.

IV. CONCLUSIONS

In this paper, an optimal control problem for a wide class
of tracking systems is formulated in which the objective is
minimization of a finite, linear combination of cumulants
of integral quadratic cost over linear, memoryless, full-state-
feedback control laws. The standard linear tracking system
constraint on a finite time interval with additive Wiener

noise and a non-random initial state underlies the problem
formulation. Because of the linearity assumptions in the
problem statement, it can be formulated as a non-stochastic
optimization problem utilizing equations for cost cumulants
developed in this exposition. Furthermore, this problem for-
mulation is parameterized both by the number of cumulants
and by the scalar coefficients in the linear combination, it
defines a very general Linear-Quadratic-Gaussian (LQG) and
Risk Sensitive problem classes. The special cases where only
the first cost cumulant is minimized is, of course, the well
known minimum mean LQG problem and whereas a denu-
merable linear combination of cost cumulants is minimized is
the continued Risk Sensitive control objective. It should also
be noted that although the optimization criterion of the cost-
cumulant control problem represents a competition among
cumulant values, the ultimate objective herein is to introduce
parametric freedom in the class of feedback control laws
which will result from the problem solution. This parametric
freedom has been exploited to achieve desirable closed-
loop system properties as illustrated in [1]-[5]. Finally, the
general solution of the cost-cumulant control problem for the
class of linear-quadratic tracking systems is presented and
is determined by a feedback cost-cumulant control obtained
by a set of coupled Riccati-type differential equations and
time-dependent tracking variables found by solving an aux-
iliary set of coupled differential equations (incorporating the
desired trajectory) backward from a stable final time. The
issue of existence of solution to the optimization problem
becomes that of existence of solutions to the Riccati-type
equations. Conditions ensuring existence of solutions to
these equations are being worked out. In fact, for values of
linear combination coefficients outside certain finite ranges,
the equations exhibit finite escape time behavior. On the
other hand, for limited ranges of the combination coefficient
values, the equations are well behaved and yield steady-state
solutions as shown in various controller designs [1]-[5].
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